
55

Computer science
A conversation with Tristan Kirkpatrick

Tristan Kirkpatrick is the Director of Computer Science at 
Outwood Grange Academies Trust. He is also the Senior 
EdTech Project Lead for the trust and oversees the EdTech 
Demonstrator Programme and Outwood EdTech. Recently, 
Tristan gained ‘Certified Innovator’ status from Google, and 
has continued to contribute to the professional teaching 
community with EdTech solutions. 
Website: www.tristank.co.uk
Twitter: @tristankp

In computer science, what does success look like by the 
end of Year 9 in terms of what students know, understand 
and can do?
In computer science and computing, you are aiming to teach the 
fundamentals really well: sequence, selection and iteration are the 
cornerstones of the subject; you would want all Year 9 students to be 
experts in sequencing, to understand and be able to apply selection 
in different contexts, and to understand and be able to use iteration, 
as that is quite a difficult concept to grasp. Beyond the cornerstones, 
you want to inspire a spark in young people, and computer science is a 
great subject for provoking sparks: it is so broad in its application, and 
at the same time, the concepts underpinning it are quite narrow. The 



Huh

56

broad applications of those key concepts can be a real benefit when 
engaging students – you see the spark in students when they develop 
a program that moves something, or when they build a website that 
sells something. And that is the spark that you are looking for. If at 
the end of key stage 3 computer science students understand the 
cornerstones well, and have an enthusiasm for computer science, then 
that constitutes success.

You commonly teach programming, using the concepts of sequencing, 
selection, and iteration:

• Sequencing is putting things in order. In primary school, 
students will put instructions in order. They often use little 
robots and you press three arrows forward and it moves three 
paces forward and then it turns right and then goes forward 
again. And generally, you aim it at a chair leg at the other side of 
the classroom. So sequencing is putting steps in order. You can 
then apply that across the whole computer science curriculum, 
with varying levels of difficulty and complexity. When students 
come to write full programs, they are still using that skill of 
sequencing, of putting things in order. 

• Selection is in terms of traffic lights: so if it is green, then the 
program can proceed, or if it is green then the robot can go; if it 
is not, then it cannot. It is that selection process that allows you 
to have different pathways through a program. Again, that is a 
concept that you teach all the way through the computer science 
curriculum, from making that robot move in primary school all 
the way through to writing huge programs at A level. 

• Iteration is where you write one line of code and make it happen 
ten times. So you could instruct that robot go forward ten steps 
and it will go forward ten steps, rather than having to click the 
arrow ten times to move it forward. 

Those are the key underpinning concepts of computer science. Alongside 
sequence, selection and iteration, there are other fundamentals that are 
important throughout the computer science curriculum:



Computer science

57

• Abstraction: breaking down a problem to its simplest form; 
• Decomposition: taking apart all the bits of a problem; 
• Pattern recognition: recognising potential patterns and 

mathematical routes to do things;
• Writing algorithms. 

Abstraction, decomposition, pattern recognition and writing algorithms 
are known as the four cornerstones of computer science. Most people 
want to know what app is being used, but that is irrelevant because 
you teach the concepts of sequence, selection and iteration; you do 
not teach how to write Python code or Javascript code. You teach the 
underlying fundamentals of those programming languages when you 
teach programming. Whilst you would write a series of instructions in 
the Python programming language that would move a robot across a 
room, you could also write a sequence of instructions that moves a robot 
across a room in Javascript. It is being able to transport the fundamental 
knowledge, understanding and skill of applying the concepts of 
sequence, selection and iteration between languages that makes the 
app, or whatever you are using, relevant. To begin with, it is all about 
those underpinning fundamentals. 

Some of the best examples of lessons in programming are the ones 
using mini-whiteboards for checking and understanding. You can begin 
a programming lesson by asking students to write a sequence on how to 
make a cup of tea. Computer science is not just about programming, it 
is also about problem solving and being able to break a problem into a 
series of steps. That is why computer science is so important for students, 
because what they learn is so transferable to lots of other subjects, even 
down to being able to use abstraction and decomposition to prioritise 
the revision they need to do for their GCSEs. Essentially, computer 
science is about being able to think logically – computational thinking.

If computer science is taught thoroughly, it will prove difficult – 
especially programming and problem solving. You are always trying to 
build resilience in students and that takes time. At the end of Year 9, you 
want your computer studies students to be resilient learners because 
actually computer science is all about resilience and trying and trying 
and trying again. There are few subjects where ‘failing’ in an activity is 
a fundamental part of getting to the solution. There is a ‘fail, fail, fail, 



Huh

58

succeed’ cycle that you need to build into students, especially at key 
stage 3.

So where do you begin in Year 7 if you are going to 
develop confident and competent computer science 
students by the end of Year 9?
You always, always begin with E-Safety, followed by a series of lessons 
on computational thinking. Part of the reason why students say this is 
hard is the new vocabulary: you have to start off with the fundamentals 
of pattern recognition, abstraction and algorithms, which is quite 
daunting for students. An effective pattern recognition lesson could 
look something like this: ask the students to draw on their whiteboards 
something that has a mouth, two ears, a nose and whiskers. And they 
draw something, and nearly every time they draw a cat. Actually what 
you emphasise is that they have not been told to draw a cat; all they have 
been asked to draw is a mouth, two ears, a nose and whiskers. You very 
occasionally get a student who draws some whiskers in one corner, a 
mouth in another etc., but most of the time you get a whiteboard full of 
cats. As humans, we recognise patterns and computers do not recognise 
patterns. So that is how you start with pattern recognition. Then you talk 
about abstraction. It helps to remove it from computers by talking about 
maps, for example. Give the students a satellite map of London and then 
give them a tube station map. You can then ask, ‘Why don’t we have all 
those trees on the London underground map?’ It is because they are 
irrelevant to the problem we are trying to solve. So that is where you 
start, and students really enjoy it. They enjoy thinking differently. But for 
some students, it takes time. It is not natural for them to think like that, 
and you have to take small steps, especially in the beginning.

When it comes to programming, the first time they touch computers 
they use micro:bits, tiny little computer devices with just some LEDs on 
them and an LED screen. They are standalone devices. It is best to use 
Blockbuilder for programming, so rather than students having to worry 
about syntax errors and rogue commas and that sort of thing, students 
can drag and drop blocks onto the screen. 

There is never enough time to cover everything in computing that you 
would like to cover. There is, within the computer science curriculum, a 
really hard theory element which is preparatory for later years. And quite 



Computer science

59

often you cover theory in key stage 3 and students are not absolutely 
clear they are learning computer science theory; as far as they are 
concerned, they are just solving problems. 

Partnering with industry 
Computer science is a brilliant subject for industry partnerships. There’s 
a processor company called Arm Ltd: they make ‘all’ the mobile phone 
processors – way more than you would ever think – and we at Outwood 
Grange Academy Trust (OGAT) have linked with them. They come to 
school and do a full experience day, where students use the knowledge 
and understanding they have learnt from micro:bits in Year 7 and solve 
problems. The first time they worked with us was, quite honestly, the best 
day in my career because of the students’ high levels of engagement. 
There is also a brilliant programme we are involved in called the First 
Tech Challenge, which is basically like Robot Wars, where students 
build their own robots, which is great fun. It fully supports every aspect 
of our curriculum. There is a serious message at the end of all of this: 
these are real careers. Students who enjoy this work can pursue a career 
in this field. There is quite a large push from CyberFirst, GCHQ and 
cyber security in recruiting students onto scholarships. That has been 
a real eye-opener for students when they realise that there are genuine 
opportunities at the end of studying computer science. We know just 
how important getting key stage 3 right is, to light that spark in students 
for computer science.

The computer science, IT and digital literacy curriculum
We begin text-based programming after February half term in Year 8. 
Building up to that point, there is an opportunity to do programming 
earlier on in a unit using Small Basic programming. In the same way 
that Python’s a programming language, Small Basic is a programming 
language. And the reason we start with the Small Basic is that it fills in 
some gaps in coding for students as they type in their code. It is an 
assisted way of coding. We get students moving a turtle around on a 
screen, so that it draws shapes. The students might draw a square by 
going forward 100, 90 degrees right, forward 100, 90 degrees right, 
forward 100, 90 degrees right, forward 100. And then they would have 
drawn a square. They would screenshot that as their evidence. They are 



Huh

60

working at the most basic level, but the same fundamental concepts – 
sequencing in this case – are used.

Programing begins with for real with Python. This is a programming 
language, which means that if we type in certain commands into the 
Python interface we can press play and run those commands and see 
what happens. The simplest command is, say, ‘print Tristan Kirkpatrick’ 
and it will print out your name. Programming is quite a heavy skill-
based activity for which we provide a lot of scaffolding for students 
throughout the rest of the teaching. We scaffold each tiny step until 
students have the confidence to keep going further, gradually building 
upon their knowledge and understanding, progressing towards 
independence. For example, if the lesson is outputting data, which will 
be printing to a screen, we try to ensure that all students get to a point 
where they can output data. Obviously we may have some students 
who are quickly outputting data, so that they can progress and output 
data on two different lines. We might ask them to output first their 
name, then their age, then their date of birth, whatever it is, and we 
come back to that and discuss sequencing. So we have a few lessons of 
outputting data and students getting to grips with opening the Python 
interface, typing in the commands, understanding that if they get one 
letter wrong. In some instances it is teaching them how to use some 
of the functions of a keyboard at key stage 3. And then we move on 
to things like the concept of a variable which is tricky. They use the 
concept in mathematics and they would refer to it as X in mathematics, 
but actually in computer science, X is an unhelpful label for a variable 
because we do not know what it means. If X is supposed to stand 
for Age then in computer science we would just call it ‘Age.’ So then 
students might start developing simple programs where they type in 
their name, it prints their name out and then it stores their age, as the 
variable name, ‘Age’, and then it prints out ‘Age’. So it is whatever you 
typed in as your Age. So we build and build, so at that point we are  
still sequencing. 

Then we move into selection, which is where more exciting things start 
to happen with Selection, because you can then start asking a question: 
‘What is the capital of England?’ And if they type in London with a 
perfect capital letter as a response, then it will say ‘Great, well done, you 
typed in London, that is the correct capital’. And if they did not, it will 



Computer science

61

say, ‘You got that question wrong’. So that is where we can start building 
that skill of Selection. Iteration is a challenge. Iteration, especially in Key 
Stage 3, is a really challenging concept to understand: we begin talking 
about looping through data and things happening more than once, just 
for one line of code. Quite often, we have to resort to physical models 
and perform the iteration on boards and draw looping arrows on bits of 
code. And that is really where we want to get to in Year 8. 

In terms of programming in Year 9, we get to a point where students 
are given an algorithm problem – something like, ‘A factory is making 
teddy bears; they make ten a day; you need to make a calculator where 
you can type in different scenarios: e.g. If five workers are working over 
this many days, how many teddies are going to be made?’ And then 
they would go away, they would plan, they would create, they would test 
their solution. So we do that over a series of lessons: it is all scaffolded, 
and it simulates the kind of mini-project that a lot of the further learning 
beyond Year 9 requires. To be able to tackle that kind of task, students 
have to have resilience built into their ways of working. 

The Design Technology process is a similar process: You get a brief; 
you decide how you are going to solve it; you solve it; then you evaluate it. 
It is exactly that kind of process we start applying to creating algorithms, 
so it does take a good while for us to develop students’ ability, to a point 
where they can look at an algorithm and then undertake the full process 
from planning to evaluation.

Computer science is not all about programming; whilst programming 
is really important, at the same time the overarching computational 
thinking and understanding of how computers work are crucial to give 
the full picture of what students learn. 

At OGAT, the majority of our curricula in our schools are a balance 
between ICT and computer science, but we have also begun embedding 
digital literacy. Now digital literacy you could call IT, but we differentiate 
computer studies, IT and digital literacy quite separately. In our core 
curriculum, I would say the makeup is about 50:50 IT/computer science. 
We still teach spreadsheets purposefully because we feel learners need 
to be prepared to be able to use spreadsheets, as there are so many jobs 
that require spreadsheet use. We also have a full theory unit, so we look 
at binary conversions and how a computer performs those conversions; 
hexadecimals; how computers display images. There is a strong theory 



Huh

62

element, and we like that because it shows students that computer 
science is not just programming. 

We recently had this problem: it had been identified that the life 
expectancy of the local population in the community of one of our 
academies was significantly below the national average. The school 
made what I feel is an incredible decision: to build a new curriculum 
based upon improving the life expectancy of its community. It is called 
the ‘Curriculum for Life’. It aims to extend the life expectancy of the 
students in that school. And I always think of it as soon as we talk about 
curriculum; it is the first thing that springs to mind, if I am honest. So, we 
sat down, and we said, ‘OK, within ICT and computer science, what do 
we want students to know and understand when they leave the school 
that they don’t know and understand now?’ It is a profound question. 
In response, we built a full course called digital literacy. It brings in 
history and financial planning, for example, but they are by-products 
of what we are teaching. Although it is not in the ICT curriculum (nor 
is it in the computer science curriculum, and it is certainly not on the 
examination specifications), it is equally important that we get that right 
for the people in that community. And what we have found is that the 
strength of some of that has begun to influence a number of schools’ 
curricula. Colleagues have seen it and said, ‘We don’t necessarily have 
the life expectancy problem in our school, but that digital literacy unit 
– it really prepares students for life.’ It has been a satisfying curriculum 
development, which you would not have expected in a world where P8 
scores and examination outcomes are king.

Looking ahead, artificial intelligence is going to be huge; an 
understanding of artificial intelligence will begin creeping into the 
curriculum. The ethics of computing are going to be more important: 
self-driving cars, for instance, are an ethical minefield. Which way should 
you have a self-driving car go if it is about to hit four teenagers, and or a 
group of six grandparents? Which way should it go? Should it deviate off 
course? Should it not? Should it stick to its course?

There are clearly much better IT curriculum roots emerging, which 
is important, since it was devalued by the EBacc in 2010. That was 
something that was providing a genuine skill base to the sector. And 
ultimately, across the whole school, a bigger and better awareness of 
computer use safety will emerge. 



Computer science

63

Upskilling your SLT line manager
One of the big things SLT line managers of computer science need to know 
straight away is that computer science has been one of those subjects of 
real change and turbulence. We began with IT teachers, often originally 
business teachers who were trained – hopefully – to teach IT. And then 
all of a sudden, computer science came along and schools wanted to 
deliver computer science, and those former business teachers who had 
retrained to teach IT were now faced with the challenge of learning 
and then teaching computer science. It was something new, they did 
not know what it was, and it is a very different subject. The computer 
studies curriculum has built up over probably seven years; seven years 
of iterative improvement. Quite early on, it was clear that you needed to 
help support heads of subject to build the curriculum because actually 
the professional subject knowledge was not necessarily secure. So it 
needed to be a curriculum that you could train staff to use at the same 
time. Computer science teaching is now at the stage where it has gone 
through this iterative cycle: staff have upskilled nationally in computer 
science and they are now able to be significantly more creative in how 
the subject is delivered as the classroom practitioners have become 
more confident in their own knowledge, understanding and skills. It 
takes professional bravery to overcome significant self-doubt to be open 
to the professional learning involved in teaching computer science.

For an SLT line manager, it is a difficult subject. Often it is a head of 
faculty who might be in charge of that department, but even then, the 
head of faculty might not have the knowledge of the curriculum. So 
especially at key stage 3, make sure that teachers are able to articulate 
the intent of their curriculum: ‘Why are you teaching micro:bits, for 
example, towards the end of Year 7? Why is the first time that they do 
text-based programming in Year 8?’ More than anything, having the 
right questions from SLT line managers will provide the kind of space for 
thinking that departments need, to make sure that they have got it right. 

In computer science, how does a department, even if it thinks its 
curriculum is challenging and cutting edge, know it has developed 
a brilliant curriculum? Where is their validation if they are the ones 
validating it? Departments need to reach out to the National Centre for 
Computer Science or the STEM Learning Centre at York and ask them 
to critique their computer science curricula. That critiquing process 



Huh

64

is something that is crucial to helping departments to develop their 
computer science curricula. 

First and foremost, line managers should read the national curriculum, 
just to understand what it is that we are expecting students to learn 
in those lessons. And the examination specifications are important. 
They provide a direction. The latest specification for computer sciences 
provides the vocabulary students need to know. That vocabulary does 
not change: you still talk about computational thinking, abstraction, 
decomposition etc. from Year 7 all the way through to Year 11, and on 
to Year 13. If a line manager is overseeing a department and trying to 
challenge that department, making sure the right questions are asked 
when looking at a department’s course plans is crucial. The SLT line 
manager will have to work hard to understand the fundamentals of 
computer science; it is a demanding and complex subject to challenge.

Computing: backgroud
It is worth quoting the purpose of computing in the national curriculum 
programme of study:

A high-quality computing education equips pupils to 
use computational thinking and creativity to understand 
and change the world. Computing has deep links with 
mathematics, science and design and technology, and 
provides insights into both natural and artificial systems. 
The core of computing is computer science, in which pupils 
are taught the principles of information and computation, 
how digital systems work and how to put this knowledge 
to use through programming. Building on this knowledge 
and understanding, pupils are equipped to use information 
technology to create programs, systems and a range of 
content. Computing also ensures that pupils become 
digitally literate – able to use, and express themselves and 
develop their ideas through, information and communication 
technology – at a level suitable for the future workplace and 
as active participants in a digital world.1

1 www.bit.ly/3gcVb4n



Computer science

65

The national curriculum for computing aims to ensure that all pupils

can understand and apply the fundamental principles and 
concepts of computer science, including abstraction, logic, 
algorithms and data representation; can analyse problems 
in computational terms, and have repeated practical 
experience of writing computer programs in order to 
solve such problems; can evaluate and apply information 
technology, including new or unfamiliar technologies, 
analytically to solve problems; are responsible, competent, 
confident and creative users of information and 
communication technology.

Once the importance statements have been revisited, it is helpful for 
subject leaders and coordinators to discuss and agree with colleagues 
the reason why their subject, in this case computing, is important for the 
pupils in their school. One way of doing this is to draw on a quote, in this 
case from George Dyson: ‘Alan Turing gave us a mathematical model 
of digital computing that has completely withstood the test of time. 
He gave us a very, very clear description that was truly prophetic.’ This 
kind of prompt allows us to formulate our way of stating the importance 
of the subject. We might agree or disagree with such a statement and 
in doing so come to a form of words which expresses our view of the 
importance of this subject, in this school. This moves us away from the 
territory of ‘We teach this subject because of the SATs or GCSEs.’ While 
the external tests and exams are important, they are not the totality of 
the subject. 

Professional communities
Subject associations are important because at the heart of their work 
is curriculum thinking, development and resources. The subject 
association for computing is Computing at School2 and it should be the 
case that any member of staff with responsibility for a subject should be 
a member of the relevant subject association, and this should be paid 
for by the school. 

2 www.computingatschool.org.uk



Huh

66

Twitter subject communities are important for the development 
of subject knowledge, because it is here that there are lively debates 
about what to teach, how to teach and the kinds of resources that are 
helpful. For computing it is worth following Computing at School3 and 
the hashtag is #CASChat.

LINKS
Ten tips for teaching programming – www.bit.ly/3k5OIsZ
Computing at School – www.computingatschool.org.uk
Network of Excellence – www.computingatschool.org.uk/noe
Barefoot Computing – www.barefootcas.org.uk
Code Club – www.codeclub.org.uk
CoderDojo – www.coderdojo.com
RaspberryPi – www.raspberrypi.org/education
Scratch Team – www.scratch.mit.edu
Hello World: Magazine for Computing and Digital Making Educators – 
www.bit.ly/3k3oV4X
Computer Science Teachers Association – www.csteachers.org
Digital Schoolhouse – www.digitalschoolhouse.org.uk/resources

3 www.twitter.com/CompAtSch



Computer science

67

An skeleton overview of the Outwood Grange Key Stage 
3 computer science curriculum

Year 7 Year 8 Year 9

A
ut

um
n

• Internet safety
• ICT: Spreadsheets
• ICT: Word Processing
• ICT: Presentations
• CS: Computational 

Thinking

• Digital Literacy  
introduction

• CS: Small basic
• DL: Creative task/

assessment

• CS: HTML web design
• CS: Theory

Sp
rin

g • CS: Computational 
Thinking

• CS: Using Micro:bit

• CS: Basic theory
• CS: Programming

• CS: Programming
• ICT: Photoshop skills

Su
m

m
er

• CS: Using Micro:bit
• ICT: Creative tasks

• CS: Programming
• DL: Creative task/

assessment

• CS: Programming
• CS: Digital literacy

Three documents for your senior leader line manager to 
read about computer science
1. The national curriculum
2. ‘What is computational thinking?’ – www.bit.ly/3k3DyFf
3. ‘Policy briefing on teachers of computing’ – www.bit.ly/3xXU4LK

Five questions for your senior leader line manager to ask 
you about computer science
1. How do you plan to build on the four cornerstones of computer 

science throughout your curriculum?
2. What is the balance between computer science, digital literacy and 

ICT within your curriculum?
3. What would success look like for your learners at the end of their 

school-life studying computer science?
4. Throughout a student’s learning, what programming languages will 

they be exposed to and why have you chosen these?
5. What do you plan to do to increase the number of girls taking up 

computer science at GCSE?




